

Algebraic Geometry I

5. Exercise sheet

Exercise 1 (4 Points):

Let R be a local ring, $S := \text{Spec}(R)$ and $s \in S$ the (unique) closed point. Prove that for every scheme X the map

$$\text{Hom}(S, X) \rightarrow \{(x \in X, \varphi: \mathcal{O}_{X,x} \rightarrow R) \mid \varphi \text{ is a local ring homomorphism}\}$$

sending a morphism $f: S \rightarrow X$ of schemes to the pair $(f(s), \mathcal{O}_{X,f(s)} \xrightarrow{f^\#} \mathcal{O}_{S,s} \cong R)$ is a bijection.

Exercise 2 (4 Points):

Let \mathcal{C} be a category. For $X \in \mathcal{C}$ let $h_X := \text{Hom}_{\mathcal{C}}(-, X): \mathcal{C}^{\text{op}} \rightarrow \text{Sets}$ be the associated functor. Let $F: \mathcal{C}^{\text{op}} \rightarrow \text{Sets}$ be an arbitrary functor.

i) Prove the Yoneda lemma, i.e., that the map

$$\text{Hom}(h_X, F) \rightarrow F(X), \eta \mapsto \eta_X(\text{Id}_X)$$

is a bijection, natural in X and F .

ii) Let S be a scheme and let $X \rightarrow S, Y \rightarrow S$ be two schemes over S . Let $\mathcal{C} = (\text{Sch}/S)$ be the category of schemes over S and let $\mathcal{D} \subseteq \mathcal{C}$ be the full subcategory consisting of objects $Z \rightarrow S \in \mathcal{C}$ with Z affine. Let $\text{Hom}_S(X, Y)$ be the set of morphisms $f: X \rightarrow Y$ of schemes over S . Show that there are bijections

$$\text{Hom}_S(X, Y) \cong \text{Hom}(h_X, h_Y) \cong \text{Hom}(h_{X|_{\mathcal{D}}}, h_{Y|_{\mathcal{D}}})$$

where $F|_{\mathcal{D}}$ denotes the restriction of a functor $F: \mathcal{C}^{\text{op}} \rightarrow \text{Sets}$ to \mathcal{D}^{op} .

Exercise 3 (4 Points):

For a scheme X we denote its underlying topological space by $|X|$. Let X, Y, S be three schemes and assume that there are morphisms $f: X \rightarrow S, g: Y \rightarrow S$. Prove that the canonical morphism

$$\pi: |X \times_S Y| \rightarrow |X| \times_{|S|} |Y|$$

is surjective and determine its fibres. Show, by giving examples, that a fiber of π can be infinite or disconnected.

Exercise 4 (4 Points):

Let k be a field. Describe the fibers in all points of the following morphisms $\text{Spec}(B) \rightarrow \text{Spec}(A)$ corresponding in each case to the canonical morphism $A \rightarrow B$.

- i) $\text{Spec}(k[T, U]/(TU - 1)) \rightarrow \text{Spec}(k[T])$
- ii) $\text{Spec}(k[T, U]/(T^2 - U^2)) \rightarrow \text{Spec}(k[T])$
- iii) $\text{Spec}(k[T, U]/(T^2 + U^2)) \rightarrow \text{Spec}(k[T])$
- iv) $\text{Spec}(k[T, U]/(TU)) \rightarrow \text{Spec}(k[T])$

To be handed in on: Tuesday, 22. November 2016.