

Algebraic Geometry I

6. Exercise sheet

Exercise 1 (4 Points):

i) Let R be a local ring. Show that the set $\mathbb{P}_{\mathbb{Z}}^n(R)$ is in natural bijection to the set of tuples (x_0, \dots, x_n) with $x_i \in R$ and some $x_j \in R^{\times}$ modulo the equivalence relation

$$(x_0, \dots, x_n) \sim (y_0, \dots, y_n) \Leftrightarrow \exists \alpha \in R^{\times} : x_i = \alpha y_i \ \forall i.$$

ii) Let $n, m \geq 0$ be two integers. Show that the schemes $\mathbb{P}_{\mathbb{Z}}^n \times_{\text{Spec}(\mathbb{Z})} \mathbb{P}_{\mathbb{Z}}^m$ and $\mathbb{P}_{\mathbb{Z}}^{n+m}$ are isomorphic if and only if $n = 0$ or $m = 0$.

Hint: Count k -valued points for k a finite field.

Exercise 2 (4 Points):

i) Prove that there exists a unique morphism $\sigma_{m,n} : \mathbb{P}_{\mathbb{Z}}^m \times_{\text{Spec}(\mathbb{Z})} \mathbb{P}_{\mathbb{Z}}^n \rightarrow \mathbb{P}_{\mathbb{Z}}^{mn+m+n}$, called the Segre embedding, which induces for every ring B the map

$$(B^{m+1} \xrightarrow{\alpha} L, B^{n+1} \xrightarrow{\beta} L') \mapsto (\alpha \otimes \beta : B^{mn+m+n+1} \cong B^{m+1} \otimes_B B^{n+1} \rightarrow L \otimes_B L')$$

on B -valued points.

ii) Let B be a local A -algebra. Show that

$$\sigma_{m,n}((x_0, \dots, x_m), (y_0, \dots, y_n)) = (x_i y_j)_{i,j}$$

under the bijection from exercise 1.

Exercise 3 (4 Points):

Let A be a ring, $X = \text{Spec}(A)$.

i) Show that a sequence $M \rightarrow N \rightarrow P$ of A -modules is exact if and only if the associated sequence $\tilde{M} \rightarrow \tilde{N} \rightarrow \tilde{P}$ of \mathcal{O}_X -modules is exact.

ii) Let $x \in X$ be a point and let $i : \{x\} \rightarrow X$ be the inclusion. Show that if $i_*(\mathcal{O}_{X,x})$ is quasi-coherent, then x does not admit a non-trivial generalization.

Exercise 4 (4 Points):

A module M over a ring A is called invertible if the functor $M \otimes_A -$ is an equivalence. A module M is called finite locally free if there exists $f_1, \dots, f_n \in A$ generating the unit ideal such that $M[f_i^{-1}]$ is a free $A[f_i^{-1}]$ -module of finite rank.

i) Prove that if M is invertible, then M is a direct summand of a finite free A -module.
 ii) Prove that a module M is finite locally free if and only if it is flat and finitely presented.
 iii) Prove that a module M is invertible if and only if it is locally free of rank 1.

To be handed in on: Tuesday, 29. November 2016.