

## Algebraic Geometry I

### 9. Exercise sheet

#### Exercise 1 (4 Points):

Let  $A$  be a noetherian, factorial ring. Prove that  $\text{Pic}(A) = 0$ .

*Hint: Proposition B.60, B.70, B.72 and remark B.75 in the book “Algebraic Geometry I” by Görtz-Wedhorn might be helpful.*

#### Exercise 2 (4 Points):

Let  $k$  be a field. Prove that  $\mathbb{Z} \cong \text{Pic}(\mathbb{P}_k^n)$  via  $1 \mapsto \mathcal{O}_{\mathbb{P}_k^n}(1)$ .

*Hint: Use Exercise 1.*

#### Exercise 3 (4 Points):

Let  $R$  be a ring and define

$$X := \{((x_0, \dots, x_n), (y_0 : \dots : y_n)) \in \mathbb{A}_R^{n+1} \times_{\text{Spec}(R)} \mathbb{P}_R^n \mid x_i y_j = x_j y_i \text{ for all } i, j\}.$$

- i) Show that  $X$  is a closed subscheme in  $\mathbb{A}_R^{n+1} \times_{\text{Spec}(R)} \mathbb{P}_R^n$ .
- ii) Prove that  $X$  is isomorphic (as a  $\mathbb{P}_R^n$ -scheme) to the total space  $\mathbb{V}(\mathcal{O}_{\mathbb{P}_R^n}(-1))$  of the line bundle  $\mathcal{O}_{\mathbb{P}_R^n}(-1)$ .
- iii) Let  $\pi: X \rightarrow \mathbb{A}_R^{n+1}$  be the canonical projection. Show that

$$\pi|_{\pi^{-1}(\mathbb{A}_R^{n+1} \setminus \{0\})}: \pi^{-1}(\mathbb{A}_R^{n+1} \setminus \{0\}) \rightarrow \mathbb{A}_R^{n+1} \setminus \{0\}$$

is an isomorphism and that  $\pi^{-1}(0) \cong \mathbb{P}_R^n$ .

- iv) Define  $\mathcal{I} := (x_0, \dots, x_n) \subseteq \mathcal{O}_{\mathbb{A}_R^{n+1}}$  and let  $f: S \rightarrow \mathbb{A}_R^{n+1}$  be a morphism such that the ideal sheaf  $f^{-1}(\mathcal{I})\mathcal{O}_S \subseteq \mathcal{O}_S$  is invertible. Prove that  $f$  factors uniquely through  $\pi$ .

*Remark: The scheme  $X$  is called the blow-up of  $\mathbb{A}_R^{n+1}$  in the closed subscheme  $0 \in \mathbb{A}_R^{n+1}$ .*

#### Exercise 4 (4 Points):

- i) Show that closed immersions are stable under composition and base change. Show that if  $f: X \rightarrow Y$ ,  $g: Y \rightarrow S$  are morphisms of schemes such that  $g$  and  $g \circ f$  are closed immersions, then also  $f$  is a closed immersion.
- ii) Let  $f: X \rightarrow Y$ ,  $g: Y \rightarrow S$  be two morphisms of schemes. Assume that  $g \circ f$  is proper and that  $g$  is separated. Prove that  $f$  is proper.

To be handed in on: Tuesday, 20. December 2016.