

Algebraic Geometry I

10. Exercise sheet

Exercise 1 (4 Points):

Let $n, m \geq 0$. Prove (without using properties of resultants) that there exist polynomials

$$P_1, \dots, P_t \in \mathbb{Z}[A_0, \dots, A_n, B_0, \dots, B_m]$$

such that for all algebraically closed fields k and all homogeneous polynomials

$$f = \sum a_i X^{n-i} Y^i, \quad g = \sum b_i X^{m-i} Y^i$$

with $a_i, b_j \in k$ there exists $(x, y) \in k^2 \setminus \{(0, 0)\}$ with $f(x, y) = g(x, y) = 0$ if and only if

$$P_1(a_0, \dots, a_n, b_0, \dots, b_m) = \dots = P_t(a_0, \dots, a_n, b_0, \dots, b_m) = 0.$$

Hint/Remark: Look at a suitable subscheme $X \subseteq \mathbb{P}_{\mathbb{Z}}^1 \times \mathbb{A}_{\mathbb{Z}}^{n+m+2}$. Using resultants one can even take $t = 1$ with P_1 the resultant.

Exercise 2 (4 Points):

Let A be a noetherian normal domain, let $U \subseteq X := \text{Spec}(A)$ be an open subset with complement $Z := X \setminus U$. Assume that for every $z \in Z$ the local ring $\mathcal{O}_{X,z}$ has Krull dimension ≥ 2 . Show that for every vector bundle \mathcal{E} on X the morphism

$$\mathcal{E}(X) \rightarrow \mathcal{E}(U), \quad s \mapsto s|_U$$

is an isomorphism.

Hint: Proposition B.70 in the book “Algebraic Geometry I” by Görtz-Wedhorn.

Exercise 3 (4 Points):

Let $f: X \rightarrow S$ be a morphism. The schematic image $\text{Im}(f)$ of f is defined as the minimal closed subscheme $Z \subseteq S$ such that f factors through the inclusion $Z \rightarrow S$.

i) Prove that the schematic image $\text{Im}(f)$ of f exists. If f is quasi-compact, show that the corresponding quasi-coherent ideal is given by the kernel of $f^{\#}: \mathcal{O}_S \rightarrow f_*(\mathcal{O}_X)$.

ii) Let k be a field and let $f \in k[x_1, \dots, x_n]$ be a polynomial of degree m . Define

$$j: \mathbb{A}_k^n \rightarrow \mathbb{P}_k^n, \quad (x_1, \dots, x_n) \mapsto (1 : x_1 : \dots : x_n).$$

Prove that the schematic image of the morphism $V(f) \hookrightarrow \mathbb{A}_k^n \xrightarrow{j} \mathbb{P}_k^n$ is defined by the homogenization $\tilde{f}(x_0, \dots, x_n) := x_0^m f(x_1/x_0, \dots, x_n/x_0) \in \mathcal{O}_{\mathbb{P}_k^n}(m)(\mathbb{P}_k^n)$.

Exercise 4 (4 Points):

Let k be a field and let $0 \rightarrow \mathcal{F}_n \rightarrow \mathcal{O}_{\mathbb{P}_k^n}^{\oplus(n+1)} \xrightarrow{(x_0, \dots, x_n)} \mathcal{O}_{\mathbb{P}_k^n}(1) \rightarrow 0$ be the canonical exact sequence on the projective space \mathbb{P}_k^n . Prove that \mathcal{F}_n is a direct sum of line bundles if and only $n = 1$. If $n = 1$ determine \mathcal{F}_n and prove that the above sequence is non-split.

To be handed in on: Tuesday, 10. January 2017.